Supplemental Material to “Charge Kondo circuit as a detector
for electron-electron interactions in a Luttinger Liquid”

T. K. T. Nguyen,! A. V. Parafilo,2 H. Q. Nguyen,! and M. N. Kiselev?

I Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Vietnam
2Center for Theoretical Physics of Complex Systems, Institute for Basic Science,
Ezpo-ro, 55, Yuseong-gu, Daejeon 34126, Republic of Korea
3The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 1-34151, Trieste, Italy

S1. GREEN’S FUNCTION

In the Supplemental Material we present the derivation of the spatially inhomogeneous Green’s function (Eq. (7) in
the main text). We follow the method developed in [S1]. Using saddle point for the Euclidean action of the spatially
inhomogeneous Luttinger liquid
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we obtain the differential equation for the Green’s function in Matsubara representation:
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We assume the following protocols for the interaction’s strength outside and inside the interacting area: g(z) = 1,
u(z) = vp for |x| > L/2, and g(x) = g, u(z) = v~ vp/g for |x| < L/2.

Equation for the Green’s function G, (x,z’) Eq. (S1.2) is completed by the boundary conditions: i) the propagator
Gy, (x,2") is continuous function at x = +L/2 and x = 2'; ii) [u(z)/g(2)]0,Gu,, (x,2’) is continuous at x = +L/2. In
addition, there is a discontinuity (jump) of Gy, (z,2’) at = 2/, i.e.,
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Besides, we assume the adiabatic switching off the interaction at © = +o0: G, (Foo,z’) = 0.
Thus, using the boundary conditions (S1.3) allows to obtain the solution of Eq. (S1.2) in four different regions as
follows:
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By matching Eqs. (S1.4) at z = £L/2, and = = 2’ we obtain:
lwnlz! —|wp|L lwnlL —|wnlz’  |wnp|L leonlL
. g {n,e v e v e?F 4+ Kye v e v e 2F }
A(x):Tu | { P E— WL} : (S1.5)
n KZe v —Kje v
|wn | —lwn|L _ Jwn| —lwn|L
B(x’)=%+e Bfe TR A() C(x’)=%e— 55 e 2 A(r), (S1.6)
lwnle’  JwplL lwnlL —lwn e’ lwp|L lenlL
, g {mre voe v e?r fK_e v e v e“F}
F(x):——|w | P —— : (S1.7)
n {/{;76 v —/€+€ v }

K |wn|L —lwn|L K_ |wn|L —lwnlL

E(x’):geT e 2r F(z') |, D(x')=-—=e 3 e 2r F(z'), (S1.8)




where Ky = 1+ g. Combining Egs. (S1.5)-(S1.8) and Eq. (S1.4), we obtain the equation for the Green’s function
(Eq. (7) in the main part of the manuscript):
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Here the upper sign in exponents corresponds to the case x > 2/, while the lower sign corresponds to x < z’. The
Green’s function Eq. (51.9) has different asymptotic values at two regimes: i) G, (0,0) ~ g/2|w,| at “high” frequencies
(temperatures), w, > v/L, and ii) G, (0,0) ~ 1/2|w,| at the “low” frequency (temperature) regime, w, < v/L.
It indicates that the long-range properties become more relevant as the frequency (temperature) decreases. The
crossover between two regimes occurs at the so-called critical temperature T<" ~ v /L.

S2. DIFFERENTIAL CONDUCTANCE: A LINEAR RESPONSE

As it is mention in the main part of the text, using the Green’s function Eq. (51.9) and integrating out bosonic
fields ¢, s(z,t), we obtain the following effective action:
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We use the perturbation theory assuming the electron backscattering amplitude |r; o] < 1 being a small parameter
in order to obtain the correlator ({¢s(iwy,)ps(—iwy))). For this, we expand the partition function over S’ [third term
in Eq. (S2.1)] up to the second order:
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Here, we use shorthand notations ¢ s = ¢c,s(t) and @, , = ¢c (')

We redefine ¢. — mN/V/2 + ¢. to proceed with the calculations. Second terms which contain ¢, 4 ¢, in the
Eqgs. (S2.2)-(S2.5) vanish after averaging procedure. Thus, for instance, the correlation function ((¢s(iwy,)ds(—iwn)))
accounted from Eq. (S2.2) is written as follows:
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In the absence of backscattering (|ry 2| = 0), the correlation function ((¢s(iwn)Ps(—iwy))) at the dc limit (w — 0)
is determined by the low-frequency limit of Eq. (S1.9), ((¢s(iwn)¢s(—iwy))) = 7/2|w,|T. However, the situation is
completely different for finite backscattering. Applying the Wick theorem in Eq. (S2.6), one find that a small correction
due to backscattering is characterized by the function (¢s(iwy)ds(—iwy,))? exp[—((¢s — ¢%)%)] exp[—((dc — ¢L)?)].
After performing the Fourier transformation, correlations functions in exponents can be obtained by summing the
series over Matsubara frequencies. It turns that w,, = 0 term does not contribute to the series, see [S2, S3]. Therefore,
at T > v/L, the high-temperature limit of Eq. (S1.9) should be considered for further calculations. Using the following
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we compute the Gaussian integrals and rewrite Eq. (S2.6) as follows:
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Using the Kubo formula [note, the current operator reads as I = (e/v/27)¢s(0,t)]
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and generalizing the above perturbative expansion for all terms in Egs. (52.2)-(52.5), we get
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where we denote |r4|? = [|r1|> + |ra|* £ 2|rq||r2| cos(27N)].
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In the low-temperature limit 7" < v/L, the interaction-induced renormalization is cut-off by finite interaction
length L [S2, S3]. One can roughly estimate the differential conductance in the low-temperature regime by replacing

T — v/L in Eq. (52.12)[S2]. Therefore, the conductance does not depend on the temperature.
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